Exercise 47

Solve the nonhomogeneous diffusion problem

$$
\begin{aligned}
u_{t} & =\kappa\left(u_{r r}+\frac{1}{r} u_{r}\right)+Q(r, t), \quad 0<r<\infty, t>0, \\
u(r, 0) & =f(r), \quad 0<r<\infty,
\end{aligned}
$$

where κ is a constant.

Solution

Since $0<r<\infty$, the Hankel transform can be applied to solve it. The zero-order Hankel transform is defined as

$$
\mathcal{H}_{0}\{u(r, t)\}=\tilde{u}(k, t)=\int_{0}^{\infty} r J_{0}(k r) u(r, t) d r,
$$

where $J_{0}(\kappa r)$ is the Bessel function of order 0 . Hence, the radial part of the laplacian in cylindrical coordinates transforms as follows.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right\}=-k^{2} \tilde{u}(k, z)
$$

The partial derivative with respect to t transforms like so.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{n} u}{\partial t^{n}}\right\}=\frac{d^{n} \tilde{u}}{d t^{n}}
$$

Take the zero-order Hankel transform of both sides of the PDE.

$$
\mathcal{H}_{0}\left\{u_{t}\right\}=\mathcal{H}_{0}\left\{\kappa\left(u_{r r}+\frac{1}{r} u_{r}\right)+Q(r, t)\right\}
$$

The Hankel transform is a linear operator.

$$
\mathcal{H}_{0}\left\{u_{t}\right\}=\kappa \mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}\right\}+\mathcal{H}_{0}\{Q(r, t)\}
$$

Use the relations above to transform the partial derivatives.

$$
\frac{d \tilde{u}}{d t}=-\kappa k^{2} \tilde{u}+\tilde{Q}(k, t)
$$

Move the term with \tilde{u} to the other side.

$$
\frac{d \tilde{u}}{d t}+\kappa k^{2} \tilde{u}=\tilde{Q}(k, t)
$$

The PDE has thus been reduced to a first-order inhomogeneous ODE that can be solved with an integrating factor.

$$
I=e^{\int^{t} \kappa k^{2} d s}=e^{\kappa k^{2} t}
$$

Multiply both sides of the ODE by I.

$$
e^{\kappa k^{2} t} \frac{d \tilde{u}}{d t}+\kappa k^{2} e^{\kappa k^{2} t} \tilde{u}=e^{\kappa k^{2} t} \tilde{Q}(k, t)
$$

The left side can be written as $d / d t(I \tilde{u})$ as a result of the product rule.

$$
\frac{d}{d t}\left(e^{\kappa k^{2} t} \tilde{u}\right)=e^{\kappa k^{2} t} \tilde{Q}(k, t)
$$

Integrate both sides with respect to t.

$$
\begin{equation*}
e^{\kappa k^{2} t} \tilde{u}=\int_{0}^{t} e^{\kappa k^{2} s} \tilde{Q}(k, s) d s+C(k) \tag{1}
\end{equation*}
$$

The lower limit of integration is arbitrary. $C(k)$ will be adjusted to match the initial condition, $u(r, 0)=f(r)$. Take the zero-order Hankel transform of both sides of it.

$$
\begin{align*}
\mathcal{H}_{0}\{u(r, 0)\} & =\mathcal{H}_{0}\{f(r)\} \\
\tilde{u}(k, 0) & =\tilde{f}(k) \tag{2}
\end{align*}
$$

Plug in $t=0$ into equation (1) and use equation (2) to determine $C(k)$.

$$
\tilde{u}(k, 0)=C(k)=\tilde{f}(k)
$$

Dividing both sides of equation (1) by $e^{\kappa k^{2} t}$, we therefore have

$$
\tilde{u}(k, t)=e^{-\kappa k^{2} t}\left[\int_{0}^{t} e^{\kappa k^{2} s} \tilde{Q}(k, s) d s+\tilde{f}(k)\right] .
$$

Now that we have $\tilde{u}(k, t)$, we can change back to $u(r, t)$ by taking the inverse Hankel transform of it.

$$
u(r, t)=\mathcal{H}_{0}^{-1}\{\tilde{u}(k, t)\}
$$

It is defined as

$$
\mathcal{H}_{0}^{-1}\{\tilde{u}(k, t)\}=\int_{0}^{\infty} k J_{0}(k r) \tilde{u}(k, t) d k .
$$

Therefore,

$$
u(r, t)=\int_{0}^{\infty} k J_{0}(k r) e^{-\kappa k^{2} t}\left[\int_{0}^{t} e^{\kappa k^{2} s} \tilde{Q}(k, s) d s+\tilde{f}(k)\right] d k
$$

where

$$
\begin{aligned}
\tilde{f}(k) & =\int_{0}^{\infty} r J_{0}(k r) f(r) d r \\
\tilde{Q}(k, t) & =\int_{0}^{\infty} Q(r, t) J_{0}(k r) r d r .
\end{aligned}
$$

